CCNA study notes on Switching

Cisco Certified Network Associate (CCNA)

Switching

1. Switches forward packets based on the physical address (such as MAC address) whereas, routers forward packets based on logical address (such as IP address). A frame’s IP address doesn’t change when being forwarded through a switch.

2. The MAC address table of a switch would be empty to begin with. However, it builds the MAC table learning from the frames that arrive at its ports by adding the MAC address and the corresponding port that it had arrived to the MAC table.

3. Cisco switches can be managed out-of-band or In-band. Examples of Out-of-band management are:

Examples of in-band management are:

4. The “show version” command on a Catalyst switch displays

5. Port security enables securing switch ports as required. Typical configuration commands for enabling port security are given below:

Switch#config t
Switch(config)#int fa0/1
Switch(config-if)#switchport port-security 
	

By default, the port is locked to the first MAC address that it learns via the port. You can also manually associate a specific MAC address to a given port by issuing the command:

switchport port-security mac-address {MAC address} in the interface configuration mode.

6. Cisco Visual Switch Manager (CVSM) is software that allows access to Cisco switches over the internet using a web browser, such as Internet Explorer or Netscape Navigator. You can monitor and configure the CVSM compatible switches over the network (remotely). The requirement is that the IP address, gateway and CVSM must be configured on the switch, so that it is accessible over the network using a web browser.

7. The command "no switchport" enables a switch port for layer 3 operation. On the other hand, the command "switchport" enables a switch port for layer 2 operation.

8. To associate a switch with a management VLAN, you need to assign an IP address to the switch. The subnet portion of the switch IP address must match the subnet number of the management VLAN. Note that switches can maintain an IP stack, which enables us to manage the switches either locally, as well as remotely by Telnet.

9. The options available with switchport port security are:

10. To telnet to a switch, the following are required:

The following are the typical steps in preparing a switch for telnet access:

Switch(config)#interface vlan <vlan-id>
Switch(config-if)#ip address <ip-address> <subnet-mask>
Switch(config-if)#ip default-gateway <ip-address>
Switch(config-if)#no shutdown

11. The command syntax for assigning a management domain for a switch is:

Switch# vtp domain <domain-name>

For example, if the domain name is newyork, the command is: Switch# vtp domain newyork

You need to create a domain while configuring the first switch in a switch network. For subsequent switches, you only need to join the existing domain. The password is required if the domain need to be secured by a password. The command allows you to create a new domain (in case the first switch is being configured) or to join an existing domain (one or more switches have already been assigned a domain).

12. The enable a switch port for layer 2 functionality use the following commands:

The first command enters interface configuration mode for the switch interface <mod>/ <num>, and the second command enables layer 2 functionality on the port.

Use the “no” form of the switchport command to enable layer3 functionality.

13. Switching methods:

i. Spanning Tree Protocol

1. Spanning Tree Protocol (STP) IEEE Specification 802.1d is used to prevent routing loops. In Cisco Catalyst 5000 series switches, use BDPUs (Bridge Protocol Data Units) to determine the spanning tree topology. STP uses a Tree Algorithm (STA) to prevent loops, resulting in a stable network topology.

2. Following are the possible solutions for preventing routing loops.

3. Spanning Tree Protocol (STP) is enabled on every port on Cisco switches, by default. It is preferred to leave it enabled, so that bridging loops don't occur. STP can be disabled selectively on any specific port by issuing the command:

Switch (enable) set spantree disable <mod-number>/<port-number>.
Ex: Switch (enable) set spantree disable 2/4
The above command disables STP on port 4 of module 2.

4. All switches participating in STP exchange information with other switches in the network through messages, known as, Bridge Protocol Data Units (BDPUs). BDPUs are sent out at a frequency of 2 seconds on every port.

5. Internally, STP assigns to each bridge (or switch) port a specific role. The port role defines the behavior of the port from the STP point of view. Based on the port role, the port either sends or receives STP BPDUs and forwards or blocks the data traffic. The different port roles are given below:

6. A switch, participating in Spanning-Tree protocol, passes through the following states:

7. During the process of Spanning-Tree Protocol execution, Root switch (say, switch A) is elected first. Next, the switch closest to the root switch is selected. This switch is known as Designated switch or Parent switch (say switch B). The frames are forwarded to the root switch(A) through the designated switch(B). Now the lowest cost port on a switch (say switch C) is selected. This is known as the Root port. A Root Port is the port on a switch that has the lowest cost path to the Root Bridge. All Non-Root Switches will have one Root Port. Here, switch B is the designated switch for switch C and switch A is known as the root switch for switch C. Note that switch C is connected to the root switch (A) through its designated switch (B).

8. During the process of Spanning-Tree Algorithm execution, some redundant ports need to be blocked. This is required to avoid bridging loops. To choose which port to use for forwarding frames, and which port to block, the following three components are used by the Spanning-Tree Protocol:

9. When a bridge starts up, the bridge ID is set as root ID. That is, it considers itself as the root bridge. However, while exchanging BDPUs, if it comes across a BDPU that has a bridge ID lower than its own, then the bridge corresponding to the BDPU is considered as root bridge, and this information is propagated. The bridge ID consists of the following:

Note that, the bridge (or switch) with lowest value of 2-byte priority will become the root bridge. If the priority value is same, then the bridge with lowest value of 6-byte MAC address will become the root bridge.

10. The command "show spantree" includes information about the following:

ii. VLANS

1. The following are the advantages of LAN segmentation using VLANs:

2. VLANs are typically configured on switch ports. However, note that a router is required to switch traffic between VLANs. A switch identifies the VLAN associated with a given frame and forwards the frame to associated ports. Separate VLANs for voice and data traffic improves the privacy and reliability of voice communication.

vlan image

A single physical port on a router can support one or more VLANs by use of sub-interfaces. There is no need to have as many physical ports on a router as that of VLANs.

3. Inter-VLAN communication can occur only if the router is configured with appropriate sub-interfaces. In this case, there are 4 VLANs (VLANs 100,200,300, and 400), in addition to VLAN 1 (management VLAN). Therefore, 5 sub-interfaces have to be configured on the router interface connecting the switch.

A roll-over cable is required for connecting a terminal to the Console port of a router/switch.

iii. VTP

1. VLAN Transport Protocol (VTP) information can be distributed throughout the network to all stations including servers, routers, and switches.

The VLAN transport protocol are:

The default VTP configuration parameters for the Catalyst switch are as follows:

2. The VTP domain name can be specified manually or learned across a configured trunk line from a server with a domain name configured. By default, the domain name is not set.

If you configure a VTP password, VTP does not function properly unless you assign the same password to each switch in the domain.

VTP trap is disabled by default. If you enable this feature, it causes an SNMP message to be generated every time a new VTP message is sent.

3. VTP is a Layer 2 messaging protocol. It carries configuration information throughout a single domain. VTP operates in one of three modes:

4. Configurations made to a single switch, called VTP server, are propagated across the switch fabric under a single domain control. Other switches, configured as VTP clients, learn the configuration information from the server. Cisco switches such as Catalyst 1900, acting as VTP servers save the VLAN configuration information in their Non volatile memory (NVRAM), whereas clients keep the information only in running configuration.

vtp image

From the output of show vtp status, we can observe that the domain name and the VTP version are different for both the switches. For successfully transferring VLAN information, the version numbers must be same on both the switches. Similarly, the VTP domain name must also be same on both the switches.

5. A VTP advertisement necessarily consists of "Configuration revision number". Every time a VTP server updates its VLAN information, it increments the configuration revision number by one count. VTP clients, use the revision number to enforce the VLAN configuration Update.

6. There are two different VTP versions. VTP version 1 and VTP version 2. These versions are not interoperable. Version 1 is the default version. All switches in a given management domain should be configured in either version 1 or version 2. Some of the advantages of VTP version 2 are as below:

7. By default, there are no passwords in VTP informational updates, and any switch that has no VTP domain name can join the VTP domain when trunking is enabled. Also any switch that has the same VTP domain name will join and exchange VTP information. This could enable an unwanted switch in your network to manage the VLAN database on each of the switches. To prevent this from occurring, set a VTP password on the switches you want to exchange information.

8. VTP pruning is a technique that enhances the available network bandwidth by reducing the broadcast, multicast, and flooded unicast messages. These frames are not forwarded to network devices that don't have ports associated with a given VLAN. When VTP pruning is enabled, a switch forwards the flooded traffic across a link to another switch, only if that switch has ports associated with that VLAN.

Previous  Up  Next  

CertExams Blog!  Certexams.com Facebook Page Certexams.com Twitter Page Certexams on YouTube


Disclaimer: CertExams.com is neither associated nor affiliated with Cisco® Systems, Inc. or any other company. CCNA, CCNP are trademarks of Cisco® Systems and duly acknowledged. The cheatsheets and practice tests material is a copyright of CertExams.com and the same is not approved or endorsed by respective certifying bodies.